Radical Cyclic [3]Daisy Chains

نویسندگان

چکیده

•Supramolecular [c3]DCs form on account of radical and anion templations•Molecular with 18 positive charges are synthesized in near quantitative yields•The air stability is enhanced because aggregation•The undergo “co-conformational” switching upon a redox stimulus Mechanically interlocked molecules (MIMs), which controllable motions between their component parts more than one dimension, interest controlling nanoconfinement three-dimensional space. Cyclic [n]daisy chains ([cn]DCs) class garland-like rotaxanes composed self-complementary monomers cross-threaded architectures. They represent promising new range mechanically interlocked, multi-dimensional artificial molecular switches. Although [c2]DCs have been widely investigated as prototypes muscles, selectively efficiently producing high-order [cn]DCs n > 2 remains an alluring goal. In this paper, we present efficient strategy for the synthesis >90% yields by employing geometry restraints along templations. These display some attractive properties, including states well redox-switchable 2D coming-and-going expansions contractions. This research paves way development switchable cross-linked polymers frameworks future applications shape adjustable nets breathable membranes. (MIMs) that internal dimension rare entities world. [2]daisy ([c2]DCs) MIMs identified muscles. It remains, however, challenge to synthesize efficiently. Herein, report design anionic templates. Two were obtained yields. One [c3]DC displayed good its cationic form, while other underwent reversible open macrocyclic closed trisarm-shaped forms under electrochemical control. findings provide not only two-dimensional electronic but also starting point extended arrays, could become forerunners The stimuli-responsive molecules1Bruns C.J. Stoddart J.F. Nature Mechanical Bond: From Molecules Machines. Wiley, 2016Crossref Scopus (369) Google Scholar (MIMs)—such bistable rotaxanes2Tian H. Wang Q.C. Recent progress rotaxanes.Chem. Soc. Rev. 2006; 35: 361-374Crossref PubMed (344) Scholar,3Zhu K. Baggi G. Loeb S.J. Ring-through-ring shuttling saturated [3]rotaxane.Nat. Chem. 2018; 10: 625-630Crossref (73) catenanes4Evans N.H. Beer P.D. Progress exploitation catenanes since millennium.Chem. 2014; 43: 4658-4683Crossref (141) Scholar,5Nguyen M.T. Ferris D.P. Pezzato C. Y. Densely charged dodecacationic [3]- tetracosacationic radial [5]catenanes.Chem. 4: 2329-2344Abstract Full Text PDF (26) Scholar—during past two decades has led advent increasingly sophisticated specialized switches6Stoddart (MIMs)—molecular shuttles, switches, machines (Nobel Lecture).Angew. Int. Ed. Engl. 2017; 56: 11094-11125Crossref (448) Scholar, 7Collin J.P. Dietrich-Buchecker Gaviña P. Jimenez-Molero M.C. Sauvage J.-P. Shuttles muscles: Linear based transition metals.Acc. Res. 2001; 34: 477-487Crossref (657) 8Sauvage chemical topology lecture).Angew. 11080-11093Crossref (398) 9Green J.E. Choi J.W. Boukai A. Bunimovich Johnston-Halperin E. DeIonno et al.A 160-kilobit memory patterned at 1011 bits per square centimetre.Nature. 2007; 445: 414-417Crossref (1039) 10Dattler D. Fuks Heiser J. Moulin Perrot Yao X. Giuseppone N. Design collective from synthetic rotors, motors.Chem. 2020; 120: 310-433Crossref (154) 11Fahrenbach A.C. Bruns Cao Ground-state thermodynamics redox-active donor-acceptor molecules.Acc. 2012; 45: 1581-1592Crossref (105) 12Bléger Hecht S. Visible-light-activated switches.Angew. 2015; 54: 11338-11349Crossref (461) machines,13Kay E.R. Leigh D.A. Rise machines.Angew. 10080-10088Crossref (227) 14Erbas-Cakmak McTernan C.T. Nussbaumer A.L. Artificial machines.Chem. 115: 10081-10206Crossref (1099) 15Ragazzon Baroncini M. Silvi Venturi Credi Light-powered autonomous directional motion dissipative self-assembling system.Nat. Nanotechnol. 70-75Crossref (255) 16Wilson M.R. Solà Carlone Goldup S.M. Lebrasseur An chemically fuelled small-molecule motor.Nature. 2016; 534: 235-240Crossref (222) 17Qiu Song B. Shen Liu W. Zhang L. Feng Guo Q.H. Cai Li precise polyrotaxane synthesizer.Science. 368: 1247-1253Crossref (60) exhibit controlled translational and/or circumrotational movements within themselves. Research switches motivated ever-increasing understanding workings microscopic biological machines18Bruns Rotaxane-based muscles.Acc. 47: 2186-2199Crossref (371) 19Zhang Marcos V. Molecular bio-inspired mechanisms.Proc. Natl. Acad. Sci. USA. 9397-9404Crossref (95) 20De Bo Gall M.A.Y. Kuschel De Winter Gerbaux machine builds asymmetric catalyst.Nat. 13: 381-385Crossref (78) driven possible polymer chemistry21Oku T. Furusho Takata A concept recyclable polymers: Topologically networked capable undergoing assembly disassembly.Angew. 2004; 966-969Crossref (182) 22Harada Hashidzume Yamaguchi Takashima Polymeric 2009; 109: 5974-6023Crossref (711) 23Bin Imran A.B. Esaki Gotoh Seki Ito Sakai Takeoka Extremely stretchable thermosensitive hydrogels introducing slide-ring cross-linkers ionic groups into network.Nat. Commun. 5: 5124Crossref (313) materials science24Loeb Rotaxanes ligands: materials.Chem. 36: 226-235Crossref 25Ariga Mori Hill Evolution machines: solution soft matter interface.Soft Matter. 8: 15-20Crossref 26Choi Kwon T.W. Coskun Highly elastic binders integrating polyrotaxanes silicon microparticle anodes lithium ion batteries.Science. 357: 279-283Crossref (639) macroscopic level. daisy chains27Ashton P.R. Baxter I. Cantrill Fyfe M.C.T. Glink P.T. White A.J.P. Williams D.J. Supramolecular chains.Angew. 1998; 37: 1294-1297Crossref (190) 28Jiménez Towards Contraction stretching linear rotaxane dimer.Angew. 2000; 39: 3284-3287Crossref (489) 29Rowan Toward chain “Wittig exchange” stoppers [2]rotaxane monomers.Org. Lett. 2: 759-762Crossref (92) 30Rotzler Mayor chains.Chem. 2013; 42: 44-62Crossref [n] components (Figure 1A) either acyclic ([an]DC) or cyclic ([cn]DC) co-constitutions. Bistable [c2]DCs, one-dimensional contraction/extension response external stimuli, well-known7Collin Scholar,18Bruns making muscles.7Collin Scholar,31Goujon [c2]Daisy muscles.CCS 2019; 1: 83-96Google Scholar,32Goujon Lang Mariani Raya al.Bistable [c2]daisy muscle-like actuators active gels.J. Am. 139: 14825-14828Crossref (77) intensively different settings, such those hydrogels,32Goujon Scholar,33Iwaso Harada Fast dry-type muscles chains.Nat. 625-632Crossref (240) nanomaterials,34Zhang Q. Rao Xie Xu T.Y. D.W. Qu D.H. Long Y.T. Tian Muscle-like nanoparticles.Chem. 2670-2684Abstract polymers,35Aoki Aibara Uchida rational entry via selective cyclization self-assembly transformation polymers.J. 6791-6794Crossref (43) so on.36Wang C.Y. S.X.A. Yang Y.W. Ditopic pillar[5]arene-based fluorescence enhancement material mediated formation.Chem. 50: 9458-9461Crossref ability dimension. expects find two- (2D 3D) framework materials,3Zhu Scholar,37Zhu O'Keefe C.A. Vukotic V.N. Schurko R.W. shuttle operates inside metal-organic framework.Nat. 7: 514-519Crossref (195) movable cross-linking nodes38Ito Slide-ring using topological supramolecular architecture.Curr. Opin. Solid State Mater. 2010; 14: 28-34Crossref (126) polymeric materials,32Goujon Scholar,39Mayumi Kato Polyrotaxane Slide-Ring Materials. Royal Society Chemistry, 2015Google Scholar,40Nakahata Self-healing formed bonds.Chem. 766-775Abstract (85) on.41Reddy Sevick E.M. D.R.M. Triangular rotaxanes: Size, fluctuations, properties.Proc. 9367-9372Crossref (5) there various can be example, metal ions,26Choi acid-base,42Wu Leung K.C.F. Benítez Han J.Y. Fang al.An acid-base-controllable chain.Angew. 2008; 7470-7474Crossref (171) light,33Iwaso redox,43Bruns Frasconi Iehl Hartlieb K.J. Schneebeli S.T. Cheng Stupp S.I. Redox radical–radical interactions.J. 136: 4714-4723Crossref (94) etc.,44Li W.-J. X.Q. Ke R. al.Daisy dendrimers: Integrated stimuli-induced modulation feature.J. 142: 8473-8482Crossref (31) noninterlocked, [cn]DCs45Voignier Frey Kraus Buděšínský Cvačka Heitz al.Transition-metal-complexed [4]pseudorotaxanes containing rigid ring-and-filament conjugates: Synthesis studies.Chem. Eur. 2011; 17: 5404-5414Crossref (27) 46Vinciguerra Cannon J.R. Zavalij P.Y. Fenselau Isaacs processes monofunctionalized cucurbit[7]uril.J. 134: 13133-13140Crossref (167) 47Hoshino Miyauchi Kawaguchi Daisy necklace: Tri[2]rotaxane cyclodextrins.J. 122: 9876-9877Crossref (157) (S[cn]DCs, where S denotes supramolecular) subsequent conversion switchable, high efficiency remain challenging tasks. reason fact hermaphroditic monomers, designed S[cn]DCs, tend self-assemble small species, i.e., S[c1]DCs48Xue Z. Mayer M.F. Actuator prototype: Capture release self-entangled [1]rotaxane.J. 132: 3274-3276Crossref (47) Scholar,49Guan Deng Ni Xiong Lin Hu X.Y. Ma Dynamic self-inclusion behavior pseudo[1]rotaxanes.Org. Biomol. 12: 1079-1089Crossref (44) S[c2]DCs,27Ashton Scholar,50Coutrot F. Romuald Busseron pH-switchable dimannosyl machine.Org. 3741-3744Crossref (174) Scholar,51Zheng Dong Huang benzo-21-crown-7/secondary ammonium salt chain.Org. 306-309Crossref (46) low concentrations entropy, polydisperse oligo- polymeric-acyclic assemblies30Rotzler Scholar,52Zheng constructed crown ether-based recognition.Chem. 41: 1621-1636Crossref Scholar,53Cai Shi Zhuang G.W. Qiu Chen Jiao Wu al.Molecular-pump-enabled polymer.J. 10308-10313Crossref (10) concentrations. As exemplified our previous research,42Wu side product templating 2% yield, major products turning out [c1]DCs (58%) (9%). To date, example54Chang J.C. Tseng S.H. Lai C.C. Y.H. Peng Chiu daisy-chain-like structures multidimensional muscles.Nat. 9: 128-134Crossref (n = 3 4) reported yield (~60%). [c3]- [c4]DCs prepared54Chang metal-templated protocol isolated mixture competing DCs. Here, 1B) [c3]DCs, namely, [c3]DC2·18PF6 [c3]DC12·18PF6, combination radical55Trabolsi Khashab Fahrenbach Friedman D.C. Colvin Cotí K.K. Tkatchouk Olsen Belowich M.E. al.Radically recognition.Nat. 42-49Crossref anion56Vickers M.S. Anion templated structures.Chem. 211-225Crossref 57Cai Sessler J.L. Neutral CH donor receptors.Chem. 6198-6213Crossref 58Lee C.H. Flood A.H. pentagonal cyanostar macrocycle cyanostilbene donors binds anions dialkylphosphate [3]rotaxanes.Nat. 704-710Crossref 59Bunchuay Docker Martinez-Martinez A.J. potent halogen-bonding motif recognition template mechanical bond synthesis.Angew. 58: 13823-13827Crossref (35) 60Chen Berry S.N. Howe E.N.W. Gale P.A. Advances receptor chemistry.Chem. 6: 61-141Abstract (90) templation. preorganized conformation plus additional templation PF6− counterions, unprecedentedly formation [c3]DC12·18PF6 With structure self-aggregation, nonaradical nonacationic [c3]DC129(⋅+) shows dramatically stability. Moreover, macrocycle, [c3]DC1218+ solution, switched conveniently reversibly oxidized reduced stimulus. demonstrate potential [c3]DCn18+ act linking units uses nanotechnology. At outset, employed 2A ) radical-based recognition61Cai Vemuri Cui al.Tuning interactions trisradical tricationic complexes varying host-cavity sizes.Chem. 11: 107-112Crossref Scholar,62Cai Mao W.G. al.Highly stable organic bisradicals protected bonds.J. 7190-7197Crossref mCBPQT2(⋅+) BIPY⋅+ [c3]DC29(⋅+) [c3]DC129(⋅+). mCBPQT2(⋅+), binding BIPY⋅+, had smaller association constant (Ka 8.9 × 103 M‒1 MeCN) 3.9 104 para analog, CBPQT2(⋅+), it several advantages when approaching [c3]DCs. First all, m-xylylene linker functionalized 5-position easily retaining local C2v symmetry.63Low symmetric monomers—i.e., CBPQT4+ derivative substituted p-xylylene units—will result highly complicated NMR spectra [cn]DCs, will make difficult grow crystals obtain ordered crystal superstructures structures. Second, derivatives straightforward often satisfactory.50Coutrot Third, BIPY⋅+⊂mCBPQT2(⋅+) pairs positively polycations them candidates construction electrochemically Finally, both host (mCBPQT2(⋅+)) guest (BIPY⋅+) species—an important property comes preorganizing conformations monomers—and consequence, selectivity achieved during [c3]DCs.Figure 3ESI MS TWIM Spectra [c3]DC12·18PF6Show full caption(A) ESI (top) (bottom) [c3]DC2·18PF6. insets show comparison theoretical experimental isotope patterns 5+ peaks [c3]DC2·18PF6.(B) [c3]DC12·18PF6. [c3]DC12·18PF6.View Large Image Figure ViewerDownload Hi-res image Download (PPT) Low (A) (B) Another crucial choice made favoring production bridge unit covalently links ring unit. described article, single methylene group was chosen 2A) linker, convenient synthetically introduces necessary rigidity. structural features corresponding monomer makes unwanted unfavorable. Instead, preferential favored occurs expected. alkyne tail, M2-CC·6PF6, straightforward. See Supplemental Sections B Starting (3,5-bis(bromomethyl)phenyl)methanol, M2-CC·6PF6 prepared five steps involving sequence SN2 substitutions overall ~30%. scaled up gram scale quite easily, tail altered will—for M2-N3·6PF6 M12-N3·6PF6 Scheme 1—so enable modification structure. visible/NIR (Vis/NIR) absorption spectroscopy reducing conditions. reduction colorless MeCN excess Zn dust followed filtration, giving deep-purple-colored solution. Vis/NIR spectrum 2B) exhibited intense NIR band centered 1,060 nm, observation characteristic61Cai complex formation. tells us assemblies—cyclic acyclic—must We recorded 0.10 mM state temperatures. temperature-dependent intensity decreased gradually heating 351 Meanwhile, absorbance peak 600 nm increased heating, clear isosbestic points observed 766 536 nm. observations indicate dissociated temperature, involved optically states—the daisy-chain assemblies monomers. order deeper insight process, performed thermodynamic analyses spectroscopic data M2-CC3(⋅+) MeCN. Section Based van 't Hoff analysis S27), apparent64For 1:1 Ka calculated applying ’t data. For linked, same data, apparent Kapp. enthalpy (ΔHa −13.8 ± 0.3 kcal·mol−1) entropy (ΔS −24.4 0.9 cal·mol−1·K−1) determined pair Hence, associated 298 K approximately 4.9 M−1, value significantly larger (8.9 M−1) host–guest complex, MV⋅+⊂mCBPQT2(⋅+). Accordingly, leading strongly cooperative65Hunter Anderson H.L. What cooperativity?.Angew. 48: 7488-7499Crossref (576) implying these very like

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formality of Cyclic Chains

We prove a conjecture raised by Tsygan [12], namely the existence of an L∞-quasiisomorphism of L∞-modules between the cyclic chain complex of smooth functions on a manifold and the differential forms on that manifold. Concretely, we prove that the obvious u-linear extension of Shoikhet’s morphism of Hochschild chains solves Tsygan’s conjecture.

متن کامل

L∞-morphisms of Cyclic Chains

Recently the first two authors [1] constructed an L∞-morphism using the S1-equivariant version of the Poisson Sigma Model (PSM). Its role in deformation quantization was not entirely clear. We give here a “good” interpretation and show that the resulting formality statement is equivalent to formality on cyclic chains as conjectured by Tsygan and proved recently by several authors [5], [9].

متن کامل

Irreducible Radical Extensions and Euler-function Chains

We discuss the smallest algebraic number field which contains the nth roots of unity and which may be reached from the rational field Q by a sequence of irreducible, radical, Galois extensions. The degree D(n) of this field over Q is φ(m), where m is the smallest multiple of n divisible by each prime factor of φ(m). The prime factors of m/n are precisely the primes not dividing n but which do d...

متن کامل

On L∞-morphisms of Cyclic Chains

Recently the first two authors [1] constructed an L∞-morphism using the S1-equivariant version of the Poisson Sigma Model (PSM). Its role in deformation quantization was not entirely clear. We give here a “good” interpretation and show that the resulting formality statement is equivalent to formality on cyclic chains as conjectured by Tsygan and proved recently by several authors [5], [10].

متن کامل

Anomalous Absorption in Cyclic C3h Radical

Yamamoto et al. (1987) reported the first detection of c-C3H radical in TMC-1 through its transition 212 → 111 at 91.5 GHz. Mangum and Wootten (1990) detected c-C3H through the transition 110 → 111 at 14.8 GHz in 12 additional galactic objects. The column density of c-C3H in the objects was estimated to be about one order of magnitude lower than that of the C3H2 which is ubiquitous in the galac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2020.11.004